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Figure 1: (a) Sketch of the domain with explicit indication of the boundary conditions (no flux of mass or
solute through the horizontal walls) and domain dimensions in horizontal (!) and vertical (�) directions.
The reference frame (G, I) as well as the initial position of the interface (red dashed line) are indicated, with
the heavy fluid (density d0, concentration⇠ = ⇠0) initially lying on top of the lighter one (dF ,⇠ = 0). (b) In
the experiments, a transparent medium consisting of monodisperse beads and fluids of different colours are
used. (c) In the simulations, the geometry consists of an array of spheres (diameter 3) fully saturated with
fluid. The fluid carrying the solute moves thought the spheres.

2.1.1. Dimensionless parameters229

In the present flow configuration, several dimensionless parameters control the system,230
which may be grouped in three-main categories: medium parameters (Darcy number), fluid231
parameters (Schmidt number) and flow parameters (Rayleigh, Rayleigh-Darcy, Peclet and232
Reynolds numbers).233

We consider a simplified configuration in which the medium is homogeneous and isotropic.234
Assuming the structure obtained from the sphere packing as an isotropic and homogeneous235
medium, it can be fully described by two global quantities, namely porosity and permeability.236
The porosity, q, represents the ratio between the volume of fluid and the total volume (fluid237
+ solid) of the domain considered, and therefore it varies between q = 0 (pure solid) and238
q = 1 (pure fluid). The permeability, : , quantifies the ability of the porous matrix to allow a239
fluid to flow through it. For a given the geometry of the medium, the Darcy number240

Da = :/�2 (2.2)241

quantifies the relative dimension of the microscopic pore-scale (
p
:) and the macroscopic242

length-scale (�) (Hewitt 2020). This is the dimensionless parameter that fully describes the243
medium properties in the present configuration.244

The dimensionless parameter that quantifies the fluid properties is the Schmidt number, a245
measure of the ratio of momentum diffusivity (kinematic viscosity, `/d>) to mass diffusivity246
(⇡) defined as247

Sc =
`

d0⇡
. (2.3)248

The dimensionless flow parameters and the relevant flow scales are obtained by combining249
domain, medium and fluid properties. A possible velocity scale of the flow is the buoyancy250
velocity251

* =
6�d:
`

, (2.4)252

which is obtained at the equilibrium between driving forces (6:�d) and viscous dissipation253
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2.3. Numerical simulations245

2.3.1. Governing equations246

In the numerical part of this study, we solve the Navier–Stokes equations for momentum,247
subject to the Oberbeck–Boussinesq approximation. This means that variations in the density248
are only significant in the buoyancy term, so we can assume the flow to be incompressible249
and impose r · u = 0 on the velocity field u. We consider variations in density to be linearly250
related to the concentration field ⇠, which itself satisfies an advection-diffusion equation.251
We therefore consider the following governing equations252

mCu + (u · r)u = �d�1
0 r? + ar2u � 6V⇠ ẑ, (2.26)253

mC⇠ + (u · r)⇠ = ⇡r2
⇠, (2.27)254255

where d0 is a reference density, a = `/d0 is the kinematic viscosity,⇡ is the solutal diffusivity,256
6 is gravitational acceleration, and V is the solutal contraction coefficient describing the linear257
relationship between density and concentration. The pressure ? satisfies a Poisson equation258
such that a divergence-free velocity field is ensured.259

We solve the equations (2.26)-(2.27) in a two-dimensional domain of height � and of260
width

p
3�. Periodic boundary conditions are imposed in the horizontal (G) direction for all261

flow variables. At the top and bottom walls (I = ±�/2), we impose zero mass flux of solute262
(mI⇠ = 0) and zero velocity (u = 0). In the following subsections, we describe the properties263
of the solid porous matrix that occupies a portion of the simulation domain, as well as details264
of the numerical implementation for the flow solver and the conditions at the liquid-solid265
boundaries.266

2.3.2. Porous medium properties267

The numerical simulations are designed to match the porosity of the experiments, namely268
q = 0.37. To consider a two-dimensional setup most similar to the monodisperse spherical269
bead pack of the experiments, we construct the solid phase in the simulations from circles270
of a given diameter 3. Most past studies of a similar configuration (e.g. Sardina et al. 2018;271
Liu et al. 2020) that explicitly resolve the pore-scale dynamics with a liquid-solid boundary272
are performed at a higher porosity, allowing for a wide range of configurations for the solid273
phase. Since we aim to match a low experimental porosity of q = 0.37, we prescribe a274
hexagonal arrangement of the circular beads, as shown in figure 6(a), which allows for free275
percolation of the fluid in 2D at these low porosities. Such perfectly regular arrangements are276
not representative of the porous matrix in the experiments, so we also repeat our simulations277
in domains where random shifts from this hexagonal arrangement are made to the positions278
of the solid circles. An example of these random shifts is shown in figure 6(b). To prevent279
regions of trapped fluid, we limit the random perturbations to the grey areas in that schematic,280
such that the (black) solid regions do not overlap.281

As discussed above in §2.2.3, the permeability : is key to understanding the effect of the282
porous medium properties on the flow. For example, the key velocity scale * of (2.6) relies283
on the balance between buoyancy, permeability, and viscosity. While the determination of284
the permeability of three-dimensional arrays of spheres is well studied, for two-dimensional285
flows (array of cylinders with infinite length) the situation has been less investigated. By286
definition, the value of permeability would be determined by measuring the pressure drop287
across the medium for different flow rates. Happel & Brenner (2012) suggest that :⇠ = 5288
holds also for two-dimensional media They considered a flow perpendicular to an array289
of cylinders (indicated as perpendicular flow in Xu & Yu (2008)) and observed that for290
0.25 < q < 0.55, the Carman constant can very well approximated as :⇠ = 5. Therefore,291
also in the two-dimensional case, we will assume that Eq. (2.23) applies.292
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because of the linear dependency of the density of the solution with respect to the solute321
concentration (Slim et al. 2013; De Paoli et al. 2022a). This condition is indeed met not only322
in the simulations presented here, but also in most of the numerical works available in the323
literature.324

The fluids employed in the experiments are water and an aqueous solution of KMnO4325
(Potassium Permanganate, Thermo Scientific, ACS reagent). We consider that the dynamic326
viscosity, ` = 9.2⇥ 10�4 Pa·s, is constant and independent of the solute concentration (Slim327
et al. 2013). Similarly, we assume that the diffusion coefficient is not sensibly affected by328
solute concentration, and corresponds to ⇡ = 1.65⇥ 10�9 m2/s. While water density (dF) is329
nearly constant among the experiments (it is only dependent on temperature, o), the density330
of the aqueous solution of KMnO4 can be varied by changing the concentration of solute in331
the aqueous solution, ⇠, which is varied to control the density difference between the heavy332
and the light fluid. Provided that the mass fraction of the solution is defined as:333

l(⇠) = ⇠

d(⇠) , (2.9)334

it is possible to determine the respective dependency of density, mass fraction and concen-335
tration. The density of the mixture, d(⇠) is well approximated by a linear function of the336
solute concentration, i.e., it meets the desired condition:337

d = d0


1 + �d

d0⇠0

�
⇠ � ⇠0

� �
. (2.10)338

The concentration-density profiles as well as additional details are reported in Appendix A.1.339

2.2.3. Porous medium properties340

With the aim of mimicking a homogeneous and isotropic porous medium, we fill the cell341
with monodisperse spheres having diameter 3, with 1 mm 6 3 6 4 mm. Provided that342
the spheres are monodisperse, the diameter of the beads and the porosity of the medium343
are the two parameters that determine the medium property, i.e., the permeability. In the344
following, we will discuss bead size, medium porosity and permeability. A summary of all345
the experimental parameters considered is reported in table 1.346

The porosity of the medium indicates the ratio between the volume of fluid used to fill347
the cell and the total cell volume (fluid and beads). We measure the porosity by comparing348
the volume of water required to filled the cell with and without the beads. The preparation349
of the medium is crucial in determining the cell porosity and permeability. In this work, the350
cell is vibrated before injecting the fluid so that the medium consolidates. Following this351
procedure, the beads form a close random packing and the expected value of porosity in case352
of monodisperse spheres is q = 0.359 � 0.375 (Dullien 1991; Haughey & Beveridge 1969).353
The values of porosity measured experimentally are q = 0.37 for all nominal diameters354
considered, except 3 = 3.00 mm, in which the value of porosity measured is slightly lower355
(q = 0.35). This difference can be possibly attributed to the lower quality of the beads with356
3 = 3.00 mm, which have a wide distribution of diameters (see Appendix A.2). Indeed, the357
more dispersed the diameters, the lower the value of porosity that can be achieved.358

The permeability is inferred from the Kozeny-Carman correlation, i.e.359

: =
3

2

36:⇠
q

3

(1 � q)2 (2.11)360

where :⇠ is the Carman constant. This phenomenological correlation is obtained for creeping361
flow, and it is found to be independent of the particle shape (Dullien 1991) (for non-spherical362
particles, 3 is the equivalent diameter). The Carman constant originally proposed within the363
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Figure 8: Dimensionless mixing length scaled with respect to ✓ is shown for experiments (colorbar) and
simulations (legend). Simulations are shown for the regular pattern (solid lines) and the randomly perturbed
pattern (dotted lines) as detailed in figure 4. In the experiments, mixing length is computed assuming that the
flow is symmetric with respect to the domain centerline, and a time correction is also applied (see §A.3). Data
is only plotted up to the time when the fingers reach the edge of the domain, so when ⌘ = �. Asymptotically,
experiments and simulations follow the scaling ⌘ = 2*C (dashed line).

The threshold-based definition discussed above would track the vertical extremes of the559
finger growth over time. Alternatively, we can define a mixing length based on the mean560
concentration profile, and this is the approach we use for the simulations. For this, we can561
assume that the mean (i.e, horizontally-averaged) profile takes a piecewise linear profile562

⇠ (I, C)
⇠0

=

8>>><
>>>:

0 I 6 �⌘/2
1/2 + I/⌘ |I | < ⌘/2
1 I > ⌘/2

(3.1)563

Here, the overbar denotes a horizontal average, ⌘ is the mixing length, and the initial interface564
position is taken as I = 0. With this assumed profile, we can express the mixing length in565
terms of the following integral566

1
⇠

2
0

π 1

�1
⇠ (1 � ⇠) dI =

π ⌘/2

�⌘/2

✓
1
2
+ I

⌘

◆ ✓
1
2
� I

⌘

◆
dI =

⌘

6
. (3.2)567

We wish to motivate here the choice of choosing two different methods to quantify the mixing568
length in experiments and simulations. In the experimental case, only the threshold-base569
approach can be employed, due to the impossibility of performing accurate measurements570
within the mixing region. Simulations, by contrast, allow for an accurate determination of571
the concentration field in the domain. Numerical threshold-based measurements of mixing572
length, however, exhibit a behaviour that is more sensitive to local flow conditions. Pioneering573
fingers produce deviations in the growth of the mixing region measured in this way, which574
on the one hand results in a higher pre-factor (i.e., closer to the experimental measurements),575
and on the other hand give an unclear asymptotic trend. When the integral definition is used576
for the mixing length, the long-term scaling is well captured.577

The dimensionless mixing length scaled with respect to ✓ is shown for experiments578
(colorbar) and simulations (legend) in figure 8. Simulations are presented for both the579
regular bead pattern (solid lines) and the perturbed bead pattern (dotted lines) as shown580
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Figure 9: Snapshots of the concentration field from some of the simulations.

profiles collapse, suggesting a self-similar development at this stage, and agree well with the383
analytic solution for a diffusing interface shown by the dashed black line. Once the Rayleigh-384
Taylor instability develops and saturates, the dynamics are controlled by a balance between385
the buoyancy driving and the friction provided by the porous medium. We therefore expect386
the buoyancy velocity scale * as defined in (2.6) to play an important role in the spread387
of the solute. Indeed, by plotting the mean concentration against the rescaled dimensionless388
coordinate I/*C, we observe further self-similar behaviour, with ⇠ remaining close to a389
linear profile within the mixing layer.390
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Figure 1: (a) Sketch of the domain with explicit indication of the boundary conditions (no flux of mass or
solute through the horizontal walls) and domain dimensions in horizontal (!) and vertical (�) directions.
The reference frame (G, I) as well as the initial position of the interface (red dashed line) are indicated, with
the heavy fluid (density d0, concentration⇠ = ⇠0) initially lying on top of the lighter one (dF ,⇠ = 0). (b) In
the experiments, a transparent medium consisting of monodisperse beads and fluids of different colours are
used. (c) In the simulations, the geometry consists of an array of spheres (diameter 3) fully saturated with
fluid. The fluid carrying the solute moves thought the spheres.

2.1.1. Dimensionless parameters229

In the present flow configuration, several dimensionless parameters control the system,230
which may be grouped in three-main categories: medium parameters (Darcy number), fluid231
parameters (Schmidt number) and flow parameters (Rayleigh, Rayleigh-Darcy, Peclet and232
Reynolds numbers).233

We consider a simplified configuration in which the medium is homogeneous and isotropic.234
Assuming the structure obtained from the sphere packing as an isotropic and homogeneous235
medium, it can be fully described by two global quantities, namely porosity and permeability.236
The porosity, q, represents the ratio between the volume of fluid and the total volume (fluid237
+ solid) of the domain considered, and therefore it varies between q = 0 (pure solid) and238
q = 1 (pure fluid). The permeability, : , quantifies the ability of the porous matrix to allow a239
fluid to flow through it. For a given the geometry of the medium, the Darcy number240

Da = :/�2 (2.2)241

quantifies the relative dimension of the microscopic pore-scale (
p
:) and the macroscopic242

length-scale (�) (Hewitt 2020). This is the dimensionless parameter that fully describes the243
medium properties in the present configuration.244

The dimensionless parameter that quantifies the fluid properties is the Schmidt number, a245
measure of the ratio of momentum diffusivity (kinematic viscosity, `/d>) to mass diffusivity246
(⇡) defined as247

Sc =
`

d0⇡
. (2.3)248

The dimensionless flow parameters and the relevant flow scales are obtained by combining249
domain, medium and fluid properties. A possible velocity scale of the flow is the buoyancy250
velocity251

* =
6�d:
`

, (2.4)252

which is obtained at the equilibrium between driving forces (6:�d) and viscous dissipation253
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through the medium (`). Multiple length scales are effective in this problem. One can consider254
as a reference length scale the distance ✓ over which advection and diffusion balance (Slim255
2014)256

✓ =
q⇡

*

. (2.5)257

Possible alternatives consists of the characteristic bead size (sphere diameter, 3) or the258
domain height (�). We will see that each of these scales is relevant in different phases of the259
dissolution process. Solutal convection in pure fluids is characterized by the competing effect260
of convection (solute-induced density differences) and dissipation (diffusion and viscosity).261
The relative importance of these contributions is measured by the concentration Rayleigh262
number based on the domain size (Ra) or the diameter of the spheres (Ra3), respectively263

Ra =
6�d�3

`⇡

, Ra3 =
6�d33

`⇡

= Ra

✓
3

�

◆3
. (2.6)264

These parameters include convection and dissipation, but do not consider the presence of265
the medium, which has a stabilizing effect on convection due to the additional friction on266
the surface of the pores. The ratio of the strength of these contributions is estimated by the267
Rayleigh-Darcy number268

Ra
⇤ =

6�d:�
`q⇡

=
*�

q⇡

=
�

✓

=
Ra Da

q

. (2.7)269

We remark that the concentration Rayleigh number [Eq. (2.6)] and the Rayleigh-Darcy270
number [Eq. (2.7)] are linked to the porous medium properties via the Darcy number271
[Eq. (2.2)] and the porosity. Finally, two more flow parameters are used to determine whether272
the flow can be modelled as a Darcy flow or not. Following (Hewitt 2020), the flow can273
be considered as a Darcy-type if the length scale of the flow structures is much greater274
than the representative volume over which the quantities are averaged, which is obtained275
for (i) viscous forces dominating over inertia at the pore-scale, and (ii) length scale of the276
convective flow large compared to the pore size. These hypotheses are verified if277

Re =
Ra

⇤
Da

1/2

(2

⌧ 1 , Pe = Ra
⇤
Da

1/2 ⌧ 1, (2.8)278

with Re and Pe the pore-scale Reynolds number and the Peclet number, respectively. In this279
study, only a few experiments (and no simulations) fall in the Darcy case, and the relative flow280
dynamics will be discussed later in §3. Note that in this definition of Pe it is assumed that the281

pore-scale length used as a length-scale for Pe is
p
 . An alternative choice consists of using282

3, which would produce larger values of Pe (by a factor of approx. 7.5 in this configuration).283
The flow scales of the experiments are listed in table 1, while the dimensionless parameters284

parameters corresponding to present experiments and simulations is reported in table 2.285

2.2. Experiments286

The experiments are performed with the aid of a thick Hele-Shaw cell filled with monodis-287
perse beads and saturated with two fluids of different density in an unstable configuration.288
The parameters that can be varied are the density difference between the fluids, �d, and the289
diameter of the beads, 3. Combining these parameters one can determine the flow reference290
scales, namely ✓ and *. A summary of the experiments performed is reported in table 1.291
We will discuss the experimental setup and the measurement procedure (§2.2.1), the fluid292
properties (§2.2.2) and the porous medium properties (§2.2.3).293
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Figure 9: Vertical profiles of the horizontally-averaged concentration field ⇠ (I, C) for simulation S12: (0)
plotted over the domain height; (1) plotted against the diffusive similarity variable; (2) plotted against height
rescaled using the buoyancy velocity.

in figure 4. Asymptotically, both experiments and simulations follow the scaling ⌘ = 2*C581
(dashed line). The buoyancy velocity, *, represents the terminal velocity of a rising (falling)582
parcel of light (heavy) fluid surrounded by heavy (light) fluid, and it is the achieved at583
the equilibrium between the driving force, represented by buoyancy, and the dissipative584
mechanism, consisting of the pressure drop across the medium. This model represents a585
simplified representation of the flow observed, and any diffusion effect or interaction with586
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Figure 13: Dimensionless mean scalar dissipation rate over dimensionless time obtained from numerical
simulations. Dashed line indicates the diffusive evolution derived in Eq. (3.9).

boundaries) or the volume-averaged squared concentration, h⇠2i. To relate these quantities,686
we consider the advection-diffusion equation (2.15). Following the procedure described in687
De Paoli et al. (2019a), we multiply each term by ⇠, and we integrate over the domain688
volume. After some algebraic manipulations, considering the boundary conditions and the689
incompressibility of the flow, we obtain an exact relation between the volume averaged690
squared concentration and the mean scalar dissipation:691

mC h⇠2i = �2j, (3.5)692

which will be used in the following to describe the evolution of the dissipation rate.693
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performed, reported in figure 13. A natural length scale to be used to analyse the results during696
the diffusive regime is ✓, defined in (2.5), and therefore time is scaled with q✓/*. In this697
frame, all simulations nicely collapse onto to the same curve in the initial diffusive phase,698
and we provide in the following an analytical description of the mixing process.699

The fluid is initially motionless, with a step-like concentration field. As a result, one700
can neglect any velocity contribution and assume that the concentration field is uniform in701
horizontal direction. It follows that the initial development, C/(q✓/*) < 3⇥103, is described702
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C. Dissipation rate183

Figure 11 plots the volume-averaged scalar dissipation rate over time. The initial devel-184

opment before 10Td is well described by a purely diffusive 1-D solution, where185

C = C0 +
∆C

2
erf

(
z√
2κt

)
. (32)

From this expression, we can derive the scalar dissipation rate by

∂zC =
∆C

2
√
πκt
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(33)

⇒ χ = κ〈|∇C|2〉 = κ
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∫ ∞

−∞
|∂zC|2dz =

√
κ

8πt

(∆C)2

H
(34)

At later times, we can provide an estimate for the dissipation rate by considering that186

dissipation only takes place within the mixing layer. The volume-averaged dissipation rate187

can therefore be written as188

χ = κ〈|∇C|2〉 = κ
Lm

H
〈|∇C|2〉ML, (35)

where 〈·〉ML denotes an average value across the mixing layer. By assuming that the con-189

vective fingers stretch the interface around the mixing layer, we can approximate the mean190
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Figure 1: (a) Sketch of the domain with explicit indication of the boundary conditions (no flux of mass or
solute through the horizontal walls) and domain dimensions in horizontal (!) and vertical (�) directions.
The reference frame (G, I) as well as the initial position of the interface (red dashed line) are indicated, with
the heavy fluid (density d0, concentration⇠ = ⇠0) initially lying on top of the lighter one (dF ,⇠ = 0). (b) In
the experiments, a transparent medium consisting of monodisperse beads and fluids of different colours are
used. (c) In the simulations, the geometry consists of an array of spheres (diameter 3) fully saturated with
fluid. The fluid carrying the solute moves thought the spheres.

2.1.1. Dimensionless parameters229

In the present flow configuration, several dimensionless parameters control the system,230
which may be grouped in three-main categories: medium parameters (Darcy number), fluid231
parameters (Schmidt number) and flow parameters (Rayleigh, Rayleigh-Darcy, Peclet and232
Reynolds numbers).233

We consider a simplified configuration in which the medium is homogeneous and isotropic.234
Assuming the structure obtained from the sphere packing as an isotropic and homogeneous235
medium, it can be fully described by two global quantities, namely porosity and permeability.236
The porosity, q, represents the ratio between the volume of fluid and the total volume (fluid237
+ solid) of the domain considered, and therefore it varies between q = 0 (pure solid) and238
q = 1 (pure fluid). The permeability, : , quantifies the ability of the porous matrix to allow a239
fluid to flow through it. For a given the geometry of the medium, the Darcy number240

Da = :/�2 (2.2)241

quantifies the relative dimension of the microscopic pore-scale (
p
:) and the macroscopic242

length-scale (�) (Hewitt 2020). This is the dimensionless parameter that fully describes the243
medium properties in the present configuration.244

The dimensionless parameter that quantifies the fluid properties is the Schmidt number, a245
measure of the ratio of momentum diffusivity (kinematic viscosity, `/d>) to mass diffusivity246
(⇡) defined as247

Sc =
`

d0⇡
. (2.3)248

The dimensionless flow parameters and the relevant flow scales are obtained by combining249
domain, medium and fluid properties. A possible velocity scale of the flow is the buoyancy250
velocity251

* =
6�d:
`

, (2.4)252

which is obtained at the equilibrium between driving forces (6:�d) and viscous dissipation253

7

through the medium (`). Multiple length scales are effective in this problem. One can consider254
as a reference length scale the distance ✓ over which advection and diffusion balance (Slim255
2014)256

✓ =
q⇡

*

. (2.5)257

Possible alternatives consists of the characteristic bead size (sphere diameter, 3) or the258
domain height (�). We will see that each of these scales is relevant in different phases of the259
dissolution process. Solutal convection in pure fluids is characterized by the competing effect260
of convection (solute-induced density differences) and dissipation (diffusion and viscosity).261
The relative importance of these contributions is measured by the concentration Rayleigh262
number based on the domain size (Ra) or the diameter of the spheres (Ra3), respectively263

Ra =
6�d�3

`⇡

, Ra3 =
6�d33

`⇡

= Ra

✓
3

�

◆3
. (2.6)264

These parameters include convection and dissipation, but do not consider the presence of265
the medium, which has a stabilizing effect on convection due to the additional friction on266
the surface of the pores. The ratio of the strength of these contributions is estimated by the267
Rayleigh-Darcy number268

Ra
⇤ =

6�d:�
`q⇡

=
*�

q⇡

=
�

✓

=
Ra Da

q

. (2.7)269

We remark that the concentration Rayleigh number [Eq. (2.6)] and the Rayleigh-Darcy270
number [Eq. (2.7)] are linked to the porous medium properties via the Darcy number271
[Eq. (2.2)] and the porosity. Finally, two more flow parameters are used to determine whether272
the flow can be modelled as a Darcy flow or not. Following (Hewitt 2020), the flow can273
be considered as a Darcy-type if the length scale of the flow structures is much greater274
than the representative volume over which the quantities are averaged, which is obtained275
for (i) viscous forces dominating over inertia at the pore-scale, and (ii) length scale of the276
convective flow large compared to the pore size. These hypotheses are verified if277

Re =
Ra

⇤
Da

1/2

(2

⌧ 1 , Pe = Ra
⇤
Da

1/2 ⌧ 1, (2.8)278

with Re and Pe the pore-scale Reynolds number and the Peclet number, respectively. In this279
study, only a few experiments (and no simulations) fall in the Darcy case, and the relative flow280
dynamics will be discussed later in §3. Note that in this definition of Pe it is assumed that the281

pore-scale length used as a length-scale for Pe is
p
 . An alternative choice consists of using282

3, which would produce larger values of Pe (by a factor of approx. 7.5 in this configuration).283
The flow scales of the experiments are listed in table 1, while the dimensionless parameters284

parameters corresponding to present experiments and simulations is reported in table 2.285

2.2. Experiments286

The experiments are performed with the aid of a thick Hele-Shaw cell filled with monodis-287
perse beads and saturated with two fluids of different density in an unstable configuration.288
The parameters that can be varied are the density difference between the fluids, �d, and the289
diameter of the beads, 3. Combining these parameters one can determine the flow reference290
scales, namely ✓ and *. A summary of the experiments performed is reported in table 1.291
We will discuss the experimental setup and the measurement procedure (§2.2.1), the fluid292
properties (§2.2.2) and the porous medium properties (§2.2.3).293
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Figure 13: Dimensionless mean scalar dissipation rate over dimensionless time obtained from numerical
simulations. Dashed line indicates the diffusive evolution derived in Eq. (3.9).

boundaries) or the volume-averaged squared concentration, h⇠2i. To relate these quantities,686
we consider the advection-diffusion equation (2.15). Following the procedure described in687
De Paoli et al. (2019a), we multiply each term by ⇠, and we integrate over the domain688
volume. After some algebraic manipulations, considering the boundary conditions and the689
incompressibility of the flow, we obtain an exact relation between the volume averaged690
squared concentration and the mean scalar dissipation:691
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performed, reported in figure 13. A natural length scale to be used to analyse the results during696
the diffusive regime is ✓, defined in (2.5), and therefore time is scaled with q✓/*. In this697
frame, all simulations nicely collapse onto to the same curve in the initial diffusive phase,698
and we provide in the following an analytical description of the mixing process.699

The fluid is initially motionless, with a step-like concentration field. As a result, one700
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Figure 11 plots the volume-averaged scalar dissipation rate over time. The initial devel-184

opment before 10Td is well described by a purely diffusive 1-D solution, where185
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erf
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z√
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From this expression, we can derive the scalar dissipation rate by

∂zC =
∆C
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√
πκt

exp

(
− z2

2κt
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(33)

⇒ χ = κ〈|∇C|2〉 = κ

H

∫ ∞
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|∂zC|2dz =

√
κ

8πt
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(34)

At later times, we can provide an estimate for the dissipation rate by considering that186

dissipation only takes place within the mixing layer. The volume-averaged dissipation rate187

can therefore be written as188

χ = κ〈|∇C|2〉 = κ
Lm

H
〈|∇C|2〉ML, (35)

where 〈·〉ML denotes an average value across the mixing layer. By assuming that the con-189

vective fingers stretch the interface around the mixing layer, we can approximate the mean190

20

RT instability in confined porous media III RESULTS

scalar gradients in the mixing layer as the diffusive solution (33) at the interface, that is191

|∇C| ≈ ∆C

2
√
πκt

. (36)

Combining this approximation with the result of figure 5 that Lm ≈ 2Ut, we arrive at the192

estimate193

χ ≈ κ
2Ut

H

(∆C)2

4πκt
=

1

2π

Ud(∆C)2

H
. (37)

This estimate proves to be an overestimate in figure 11. The overestimation is not a great194

surprise since, in the frame of the interface, the approximation given by (36) is the maximum195

gradient rather than the average over a certain scale.196

1. Modelling of dissolution regimes: d-scaling197

Mean scalar dissipation made dimensionless with U(∆C)2/H is defined as χ∗. Time made198

dimensionless with d/U is t∗. In dimensionless terms, the diffusive regime is characterized199

by:200

χ∗
diff =

1√
8π

1√
φf(φ)Rac,d

(t∗)−1/2. (38)

Similarly, the maximum value of scalar dissipation is201

χ∗
max =

1

2π
. (39)

2. Modelling of dissolution regimes: !-scaling202

Time made dimensionless with %/U is t̂. In dimensionless terms, the diffusive regime is203

characterized by:204

χ∗
diff =

1√
8π

1√
φ
t̂−1/2. (40)

Same as De Paoli et al. [24], time defined differently, i.e. including φ. Using the definition205

of scalar dissipation of De Paoli et al. [24] and the time scaled with φ%/U , we obtain :206

χ∗
diff,2 =

φ−1

√
8π

t̂−1/2. (41)

3. Modelling of dissolution regimes: H-scaling207

Time made dimensionless with H/U is t̃. A sudden reduction of χ∗ occurs for t̃ = 1, which208

is approximately twice the time required for the fingers to reach the boundaries. Compare209

values of χ with De Paoli et al. [24]. Compute integral in time of χ if required. Model210

shutdown using models of Hewitt et al. [25], Hidalgo et al. [26].211
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χ∗
max =

1

2π
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. (36)
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H
. (37)
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1/(2') is the maximum value 
ofmean dissipation. Measurements 
indicate that ( decreases with time

7

through the medium (`). Multiple length scales are effective in this problem. One can consider254
as a reference length scale the distance ✓ over which advection and diffusion balance (Slim255
2014)256

✓ =
q⇡

*

. (2.5)257

Possible alternatives consists of the characteristic bead size (sphere diameter, 3) or the258
domain height (�). We will see that each of these scales is relevant in different phases of the259
dissolution process. Solutal convection in pure fluids is characterized by the competing effect260
of convection (solute-induced density differences) and dissipation (diffusion and viscosity).261
The relative importance of these contributions is measured by the concentration Rayleigh262
number based on the domain size (Ra) or the diameter of the spheres (Ra3), respectively263

Ra =
6�d�3

`⇡

, Ra3 =
6�d33

`⇡

= Ra

✓
3

�

◆3
. (2.6)264

These parameters include convection and dissipation, but do not consider the presence of265
the medium, which has a stabilizing effect on convection due to the additional friction on266
the surface of the pores. The ratio of the strength of these contributions is estimated by the267
Rayleigh-Darcy number268

Ra
⇤ =

6�d:�
`q⇡

=
*�

q⇡

=
�

✓

=
Ra Da

q

. (2.7)269

We remark that the concentration Rayleigh number [Eq. (2.6)] and the Rayleigh-Darcy270
number [Eq. (2.7)] are linked to the porous medium properties via the Darcy number271
[Eq. (2.2)] and the porosity. Finally, two more flow parameters are used to determine whether272
the flow can be modelled as a Darcy flow or not. Following (Hewitt 2020), the flow can273
be considered as a Darcy-type if the length scale of the flow structures is much greater274
than the representative volume over which the quantities are averaged, which is obtained275
for (i) viscous forces dominating over inertia at the pore-scale, and (ii) length scale of the276
convective flow large compared to the pore size. These hypotheses are verified if277

Re =
Ra

⇤
Da

1/2

(2

⌧ 1 , Pe = Ra
⇤
Da

1/2 ⌧ 1, (2.8)278

with Re and Pe the pore-scale Reynolds number and the Peclet number, respectively. In this279
study, only a few experiments (and no simulations) fall in the Darcy case, and the relative flow280
dynamics will be discussed later in §3. Note that in this definition of Pe it is assumed that the281

pore-scale length used as a length-scale for Pe is
p
 . An alternative choice consists of using282

3, which would produce larger values of Pe (by a factor of approx. 7.5 in this configuration).283
The flow scales of the experiments are listed in table 1, while the dimensionless parameters284

parameters corresponding to present experiments and simulations is reported in table 2.285

2.2. Experiments286

The experiments are performed with the aid of a thick Hele-Shaw cell filled with monodis-287
perse beads and saturated with two fluids of different density in an unstable configuration.288
The parameters that can be varied are the density difference between the fluids, �d, and the289
diameter of the beads, 3. Combining these parameters one can determine the flow reference290
scales, namely ✓ and *. A summary of the experiments performed is reported in table 1.291
We will discuss the experimental setup and the measurement procedure (§2.2.1), the fluid292
properties (§2.2.2) and the porous medium properties (§2.2.3).293
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Modelling scalar dissipation
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Modelling scalar dissipation
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Modelling scalar dissipation
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Figure 13: Dimensionless mean scalar dissipation rate over dimensionless time obtained from numerical
simulations. Dashed line indicates the diffusive evolution derived in Eq. (3.9).

boundaries) or the volume-averaged squared concentration, h⇠2i. To relate these quantities,686
we consider the advection-diffusion equation (2.15). Following the procedure described in687
De Paoli et al. (2019a), we multiply each term by ⇠, and we integrate over the domain688
volume. After some algebraic manipulations, considering the boundary conditions and the689
incompressibility of the flow, we obtain an exact relation between the volume averaged690
squared concentration and the mean scalar dissipation:691

mC h⇠2i = �2j, (3.5)692

which will be used in the following to describe the evolution of the dissipation rate.693

3.4.1. Diffusive regime694

We now consider the volume-averaged scalar dissipation rate over time for all the simulations695
performed, reported in figure 13. A natural length scale to be used to analyse the results during696
the diffusive regime is ✓, defined in (2.5), and therefore time is scaled with q✓/*. In this697
frame, all simulations nicely collapse onto to the same curve in the initial diffusive phase,698
and we provide in the following an analytical description of the mixing process.699

The fluid is initially motionless, with a step-like concentration field. As a result, one700
can neglect any velocity contribution and assume that the concentration field is uniform in701
horizontal direction. It follows that the initial development, C/(q✓/*) < 3⇥103, is described702
by a purely diffusive 1-D solution, where703

⇠ =
⇠0
2


1 + erf

✓
I

2
p
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◆�
. (3.6)704

From this expression, we can derive the scalar dissipation rate by705
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diffusivity (D) is quantified with Schmidt number41

Sc =
µ

ρ0D
. (5)

C. Flow parameters and scales42

A possible velocity scales of the flow consists of the buoyancy velocity43

U =
g∆ρk

µ
. (6)

About the length scales, different options are possible. One can consider as a reference44

length scale the distance " over which advection and diffusion balance [9]45

" =
φD

U
. (7)

Possible alternatives consists of the characteristic bead size (sphere diameter, d) or the46

domain height (H).47

In solutal convection (i.e. when the density difference ∆ρ is obtained as a result of a
concentration difference), the flow is studied in terms of concentration Rayleigh number
based on the diamteter of the spheres (Rac,d) or the domain size (Rac,H), respectively

Rac,H =
g∆ρH3

µD
(8)

Rac,d =
g∆ρd3

µD
=Rac,H

(
d

H

)3

. (9)

The evolution of the porous layer is controlled by buoyancy, which tends to bring the fluids
in a stable configuration, and diffusion, acting to reduce local concentration gradients and
increasing the mixing of solute in the domain. The relative importance of the strength
of these contributions is estimated by the Rayleigh-Darcy number. Also in this case, the
domain height or the particle diameter can be used as reference scales, and one can obtain:

RaH =
g∆ρkH

µφD
=

UH

φD
=

H

"
(10)

Rad =
g∆ρkd

µφD
=

Ud

φD
=

d

"
=RaH

(
d

H

)
. (11)

The concentration Rayleigh numbers [Eq. (9)] and the Rayleigh-Darcy numbers [Eq. (11)]
are linked via the Darcy number [Eq. (4)] and the porous medium properties (φ, d,H) so
that:

RaH =
Rac,H DaH

φ
=Rac,H f(φ)

(
d

H

)2

(12)

Rad =
Rac,d Dad

φ
=Rac,d f(φ). (13)
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Figure 16: Model for the evolution of the interface in the convective phase. (a) The entire
domain (dimensions ! ⇥ �) is sketched for a time C within the convective regime, when
fingers have already developed. The average width of the fingers is _. At this time, the
extension of the mixing region is ⌘(C), and the interface between the fluids (red line) can be
approximated by a segmented line (blue). (b) Detail of the interfacial region. We assume
the interface (black solid line) has a finite thickness X(C), and the mixing occurs within
this region. A coordinate system is defined such that B is tangential to the interface and =

perpendicular to it.

Figure 17: Dimensionless mean scalar dissipation rate over dimensionless time obtained
from numerical simulations. Horizontal dashed line, corresponding to a dimensionless
value of 1/2c, Eq. (3.10), refers to the maximum mean dissipation rate in the convective
regime. Vertical dashed lines approximately correspond to time required for the fingers to
reach the horizontal walls of the domain, C/(�/*) = 1/2, and for the core of the domain
to be influenced by the presence of the walls, C/(�/*) = 1.

of the scalar dissipation. It is apparent that in this regime, refereed here as a shutdown regime,552
the relevant flow length scale is �. Therefore we report in figure 17 the evolution of j as a553
function of C/(�/*), and we observe that all curves nicely collapse in the late stage of the554
flow evolution.555

After the fingers impinged on the horizontal walls, the concentration field in the near-556
wall regions begins to be progressively more homogeneous. In quantitate terms, this reflects557
reduction of the local concentration gradients, and therefore of the mean scalar dissipation.558
Mixing is still ongoing, however, in the central portion of the domain, where the information559
that the walls are present has not reached yet. Approximately at time C = �/*, the core of the560
flow is affected as well, and the entire domain is nearly homogeneous in solute concentration,561
i.e., the local concentration gradients are small and the mean scalar dissipation drops. The562
overall dynamics is controlled in this case by the domain height, however geometry and563
buoyancy still play a role in determining the reduction rate of the scalar dissipation.564
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Conclusions

• Multiple length scales are relevant to 
different phases of the process

• We explain theoretically the scaling 
laws observed 

• We plan to performed simulations in 
three-dimensional domains and Darcy 
simulations with dispersion

Thank you for your 
attention! Questions?
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High-resolution images, movies and slides are 
available upon request to m.depaoli@utwente.nl 
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