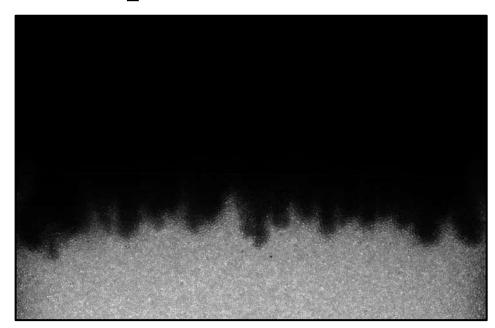
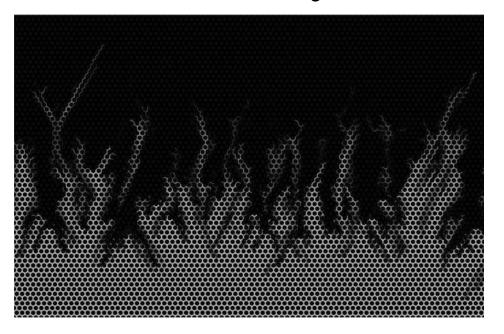
# Convective mixing in confined porous media: a pore-scale study





M. De Paoli<sup>1,2</sup>, C. Howland<sup>1</sup>, R. Verzicco<sup>1,3,4</sup> & D. Lohse<sup>1,5</sup>

<sup>1</sup>Physics of Fluids Group, University of Twente, Enschede (The Netherlands)

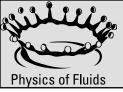
<sup>2</sup>Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna (Austria)

<sup>3</sup>Dipartimento di Ingegneria Industriale, University of Rome «Tor Vergata», Rome (Italy)

<sup>4</sup>Gran Sasso Science Institute, L'Aquila (Italy)

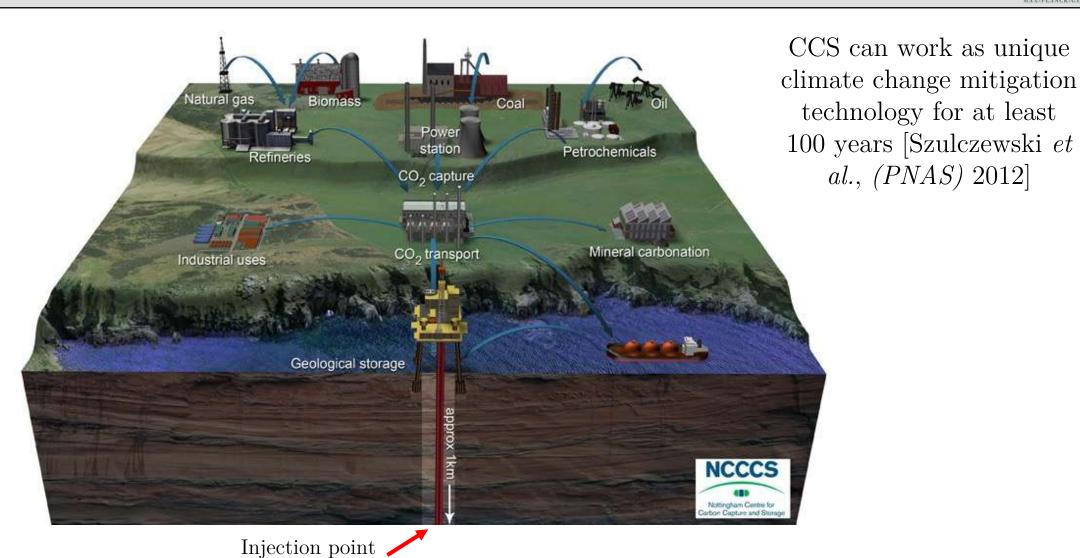
<sup>5</sup>Max Plank Institute for Dynamics and Self-Organization, Göttingen (Germany)



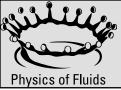


# Carbon Capture and Storage (CCS)



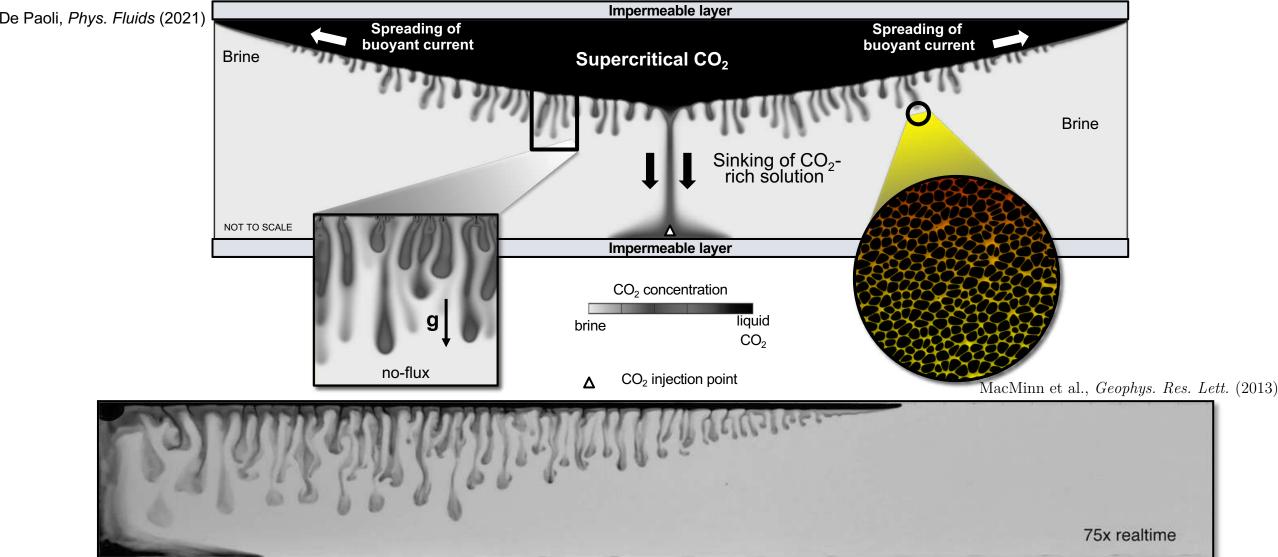


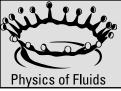
Convective mixing in confined porous media: a pore-scale study



# Convection in complex multiphase and multiscale systems

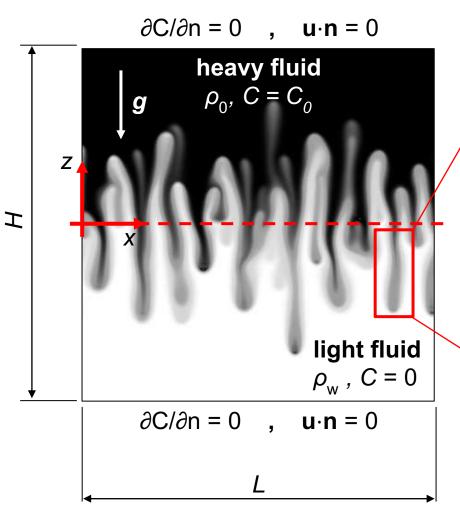




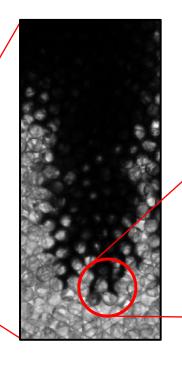


# Flow configuration

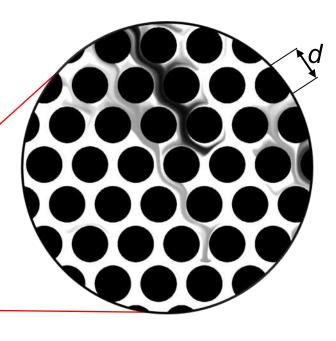




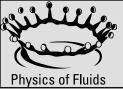
#### experiments



#### simulations

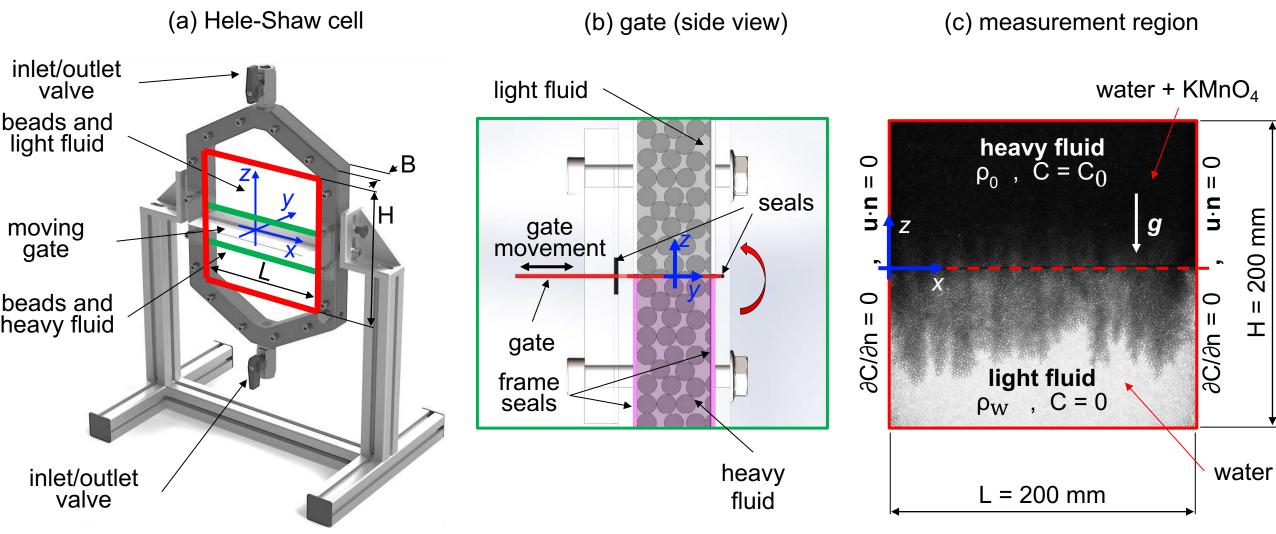


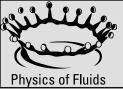
- High Schimdt number
- Porosity matched  $\phi = 0.37$
- Solid impermeable to solute
- Linear dependency  $\rho(C)$



### Experimental setup

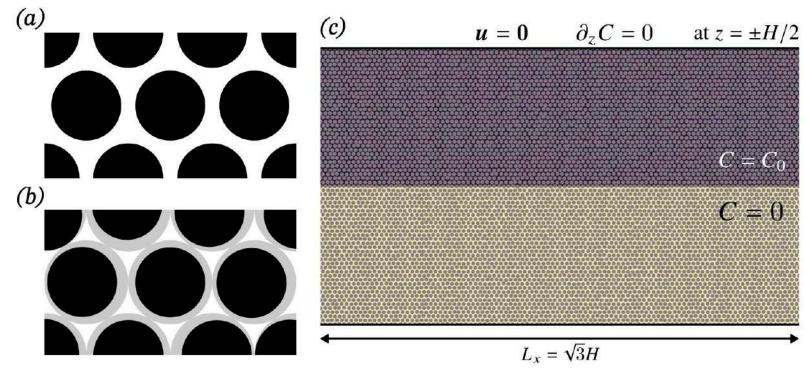






#### Numerical method





Advanced finite difference (AFiD, open source)

Immersed Boundaries Method

#### Resolution:

- velocity: ≥ 32 points per diameter
- concen.: ≥ 128points per diameter

 $\partial_t C + (\boldsymbol{u} \cdot \boldsymbol{\nabla})C = D\nabla^2 C$ 

 $\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} = -\rho_0^{-1} \boldsymbol{\nabla} p + \nu \nabla^2 \boldsymbol{u} - g\beta C \hat{\boldsymbol{z}},$ 







#### experiments

| Name | H/d | $\phi$ | Sc  | Ra                     | Ra <sub>d</sub>     | Ra*                 | Pe      | Re     |
|------|-----|--------|-----|------------------------|---------------------|---------------------|---------|--------|
| E1   | 200 | 0.37   | 558 | $4.535 \times 10^{10}$ | $5.669 \times 10^3$ | $2.173 \times 10^3$ | 0.289   | 0.0005 |
| E2   | 200 | 0.37   | 558 | $9.099 \times 10^{10}$ | $1.137 \times 10^4$ | $4.359 \times 10^3$ | 0.580   | 0.0010 |
| E3   | 200 | 0.37   | 558 | $1.824 \times 10^{11}$ | $2.280 \times 10^4$ | $8.737 \times 10^3$ | 1.163   | 0.0021 |
| E4   | 200 | 0.37   | 558 | $3.637 \times 10^{11}$ | $4.546 \times 10^4$ | $1.742 \times 10^4$ | 2.320   | 0.0042 |
| E5   | 114 | 0.37   | 558 | $4.667 \times 10^{10}$ | $3.126 \times 10^4$ | $6.846 \times 10^3$ | 1.595   | 0.0029 |
| E6   | 114 | 0.37   | 558 | $9.099 \times 10^{10}$ | $6.096 \times 10^4$ | $1.335 \times 10^4$ | 3.110   | 0.0056 |
| E7   | 114 | 0.37   | 558 | $1.820 \times 10^{11}$ | $1.219 \times 10^5$ | $2.671 \times 10^4$ | 6.222   | 0.0112 |
| E8   | 114 | 0.37   | 558 | $3.626 \times 10^{11}$ | $2.429 \times 10^5$ | $5.320 \times 10^4$ | 12.395  | 0.0222 |
| E9   | 67  | 0.35   | 558 | $4.490 \times 10^{10}$ | $1.515 \times 10^5$ | $1.627 \times 10^4$ | 5.795   | 0.0104 |
| E10  | 67  | 0.35   | 558 | $9.495 \times 10^{10}$ | $3.204 \times 10^5$ | $3.441 \times 10^4$ | 12.256  | 0.0220 |
| E11  | 67  | 0.35   | 558 | $1.834 \times 10^{11}$ | $6.189 \times 10^5$ | $6.646 \times 10^4$ | 23.672  | 0.0425 |
| E12  | 67  | 0.35   | 558 | $3.670 \times 10^{11}$ | $1.239 \times 10^6$ | $1.330 \times 10^5$ | 47.370  | 0.0850 |
| E13  | 50  | 0.37   | 558 | $4.506 \times 10^{10}$ | $3.605 \times 10^5$ | $3.454 \times 10^4$ | 18.393  | 0.0330 |
| E14  | 50  | 0.37   | 558 | $9.101 \times 10^{10}$ | $7.281 \times 10^5$ | $6.976 \times 10^4$ | 37.150  | 0.0666 |
| E15  | 50  | 0.37   | 558 | $1.824 \times 10^{11}$ | $1.460 \times 10^6$ | $1.398 \times 10^5$ | 74.474  | 0.1336 |
| E16  | 50  | 0.37   | 558 | $3.622 \times 10^{11}$ | $2.898 \times 10^6$ | $2.777 \times 10^5$ | 147.861 | 0.2652 |

#### flow scales and parameters

$$k = \frac{d^2}{36k_C} \frac{\phi^3}{(1 - \phi)^2} \qquad U = \frac{g\Delta\rho k}{\mu} \qquad \ell = \frac{\phi D}{U}$$

Physics of Fluids

$$U = \frac{g\Delta\rho k}{\mu}$$

$$\ell = \frac{\phi D}{U}$$

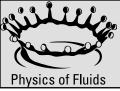
$$Sc = \frac{\mu}{\rho_0 D}$$

#### simulations

| Name       | H/d | $\phi$ | Sc  | Ra                     | Ra <sub>d</sub>     | Ra*                 | Pe     | Re     |
|------------|-----|--------|-----|------------------------|---------------------|---------------------|--------|--------|
| <b>S</b> 1 | 17  | 0.37   | 100 | $5.268 \times 10^8$    | $1.000 \times 10^5$ | $3.334 \times 10^3$ | 5.102  | 0.0510 |
| S2         | 17  | 0.37   | 100 | $1.666 \times 10^9$    | $3.162 \times 10^5$ | $1.054 \times 10^4$ | 16.135 | 0.1614 |
| S3         | 17  | 0.37   | 100 | $5.268 \times 10^9$    | $1.000 \times 10^6$ | $3.334 \times 10^4$ | 51.024 | 0.5102 |
| S4         | 35  | 0.37   | 100 | $4.214\times10^{9}$    | $1.000 \times 10^5$ | $6.669 \times 10^3$ | 5.102  | 0.0510 |
| S5         | 35  | 0.37   | 100 | $1.333 \times 10^{10}$ | $3.162 \times 10^5$ | $2.109 \times 10^4$ | 16.135 | 0.1614 |
| <b>S</b> 6 | 35  | 0.37   | 100 | $4.214 \times 10^{10}$ | $1.000 \times 10^6$ | $6.669 \times 10^4$ | 51.024 | 0.5102 |
| S7         | 52  | 0.37   | 100 | $1.422 \times 10^{10}$ | $1.000 \times 10^5$ | $1.000 \times 10^4$ | 5.102  | 0.0510 |
| S8         | 52  | 0.37   | 100 | $4.498 \times 10^{10}$ | $3.162 \times 10^5$ | $3.163 \times 10^4$ | 16.135 | 0.1614 |
| S9         | 52  | 0.37   | 100 | $1.422 \times 10^{11}$ | $1.000 \times 10^6$ | $1.000 \times 10^5$ | 51.024 | 0.5102 |
| S10        | 70  | 0.37   | 100 | 3.372×10 <sup>10</sup> | $1.000 \times 10^5$ | $1.334 \times 10^4$ | 5.102  | 0.0510 |
| S11        | 70  | 0.37   | 100 | $1.066 \times 10^{11}$ | $3.162 \times 10^5$ | $4.218 \times 10^4$ | 16.135 | 0.1614 |
| S12        | 70  | 0.37   | 100 | $3.372\times10^{11}$   | $1.000 \times 10^6$ | $1.334 \times 10^5$ | 51.024 | 0.5102 |
|            |     |        |     |                        |                     |                     |        |        |

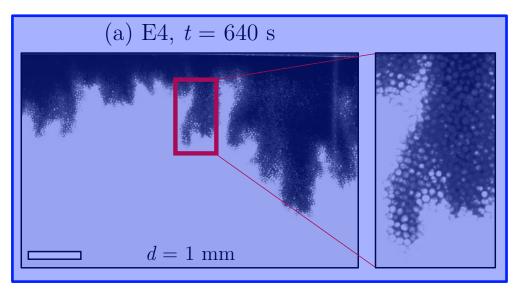
#### dimensionless parameters

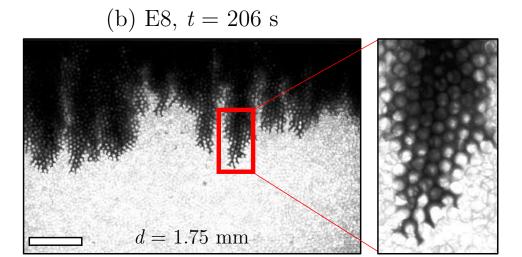
$$Da = k/H^2$$
  $Ra = \frac{g\Delta\rho H^3}{\mu D}$   $Ra_d = \frac{g\Delta\rho d^3}{\mu D}$   $Ra_d = \frac{g\Delta\rho d^3}{\mu D}$   $Ra^* = \frac{Ra\,Da}{\phi}$   $Re = \frac{Ra^*\,Da^{1/2}}{Sc}$   $Pe = Ra^*\,Da^{1/2}$ 

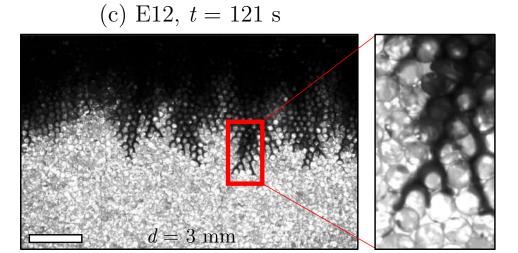


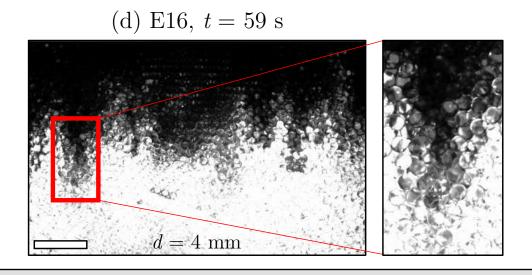
# Influence of d ( $\Delta \rho = 7 \text{ kg/m}^3$ )

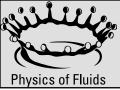






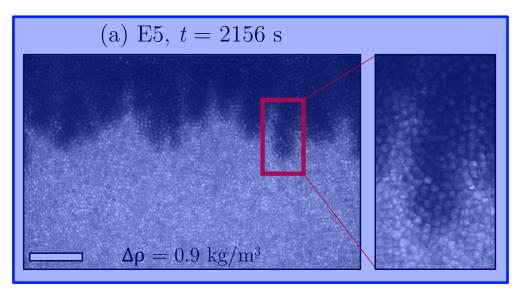


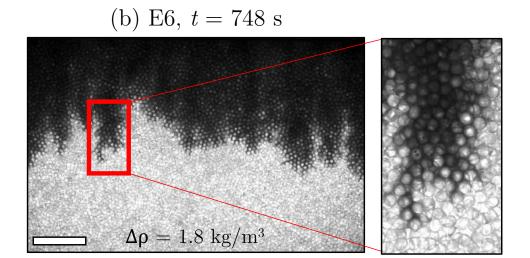


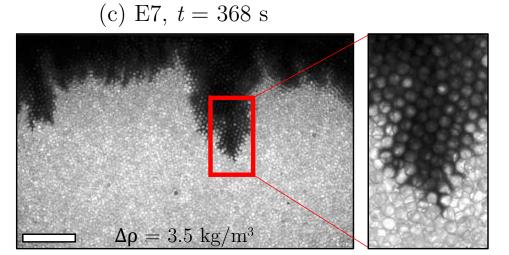


# Influence of $\Delta \rho$ (d = 1.75 mm)

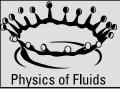






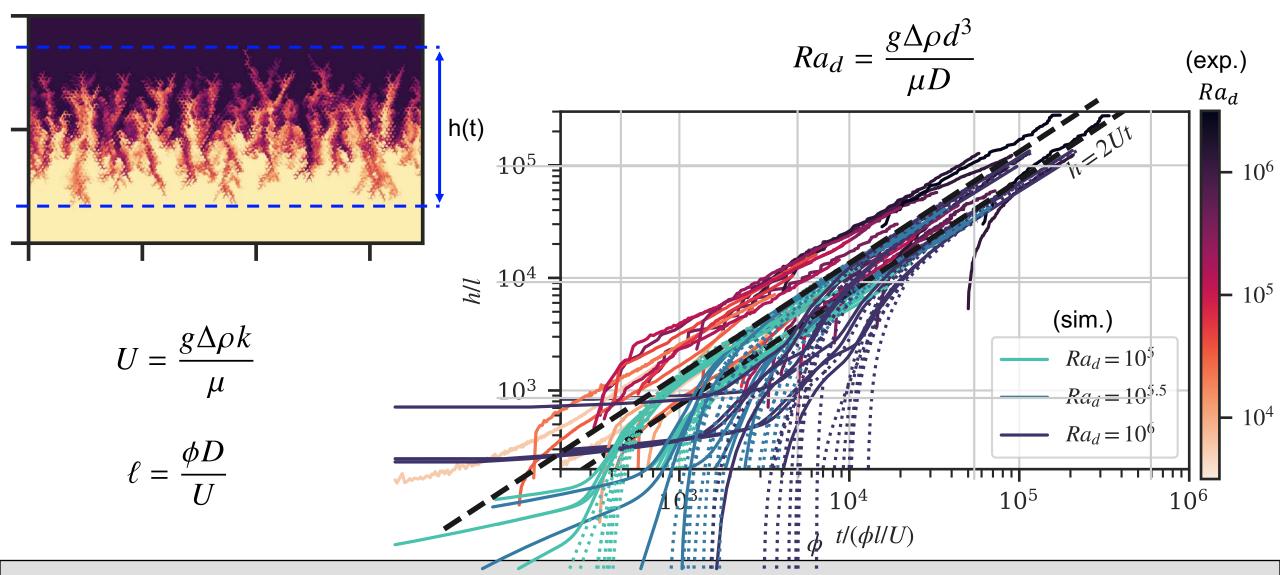


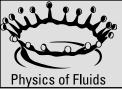




## Mixing length

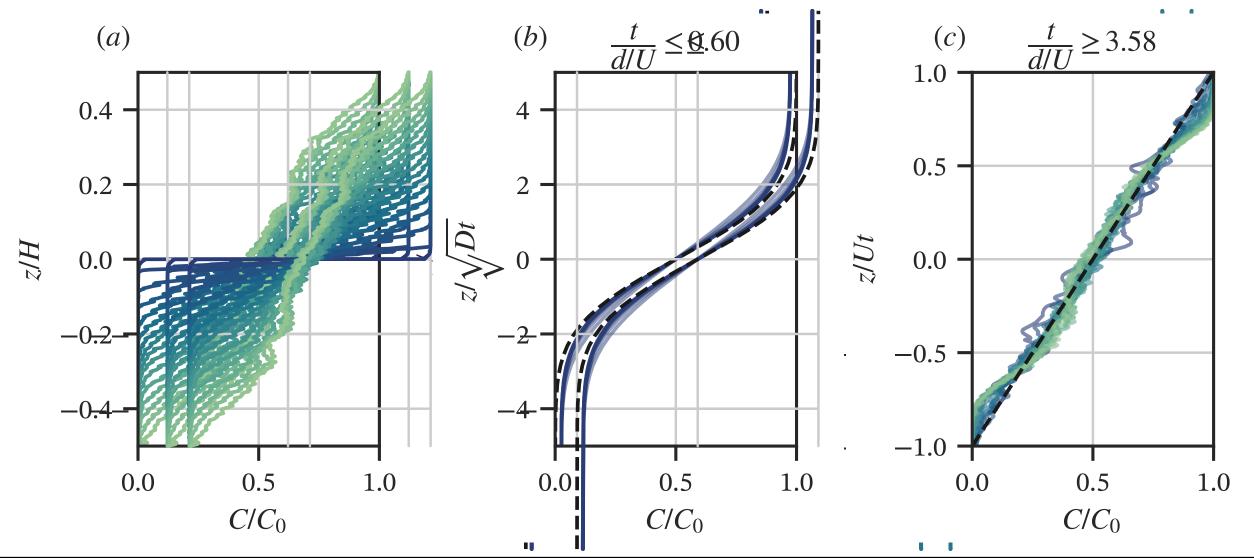


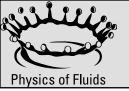




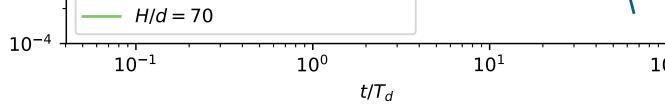
# Concentration profiles







# Modelling



$$\chi = D\langle |\nabla C|^2 \rangle_f = \frac{D}{V_f} \int_{V_f} |\nabla C|^2 \ dV$$

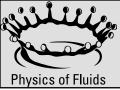
# Can we model this mixing/dissolution process?

# diffusion $Ra_{d} = 10^{5}$ $Ra_{d} = 10^{5.5}$ $Ra_{d} = 10^{6}$ $10^{-3}$ $10^{2}$ $10^{3}$ $10^{4}$ $10^{5}$

#### Diffusion:

$$C = C_0 + \frac{\Delta C}{2} \operatorname{erf}\left(\frac{z}{\sqrt{2\kappa t}}\right)$$
$$\partial_z C = \frac{\Delta C}{2\sqrt{\pi \kappa t}} \exp\left(-\frac{z^2}{2\kappa t}\right)$$

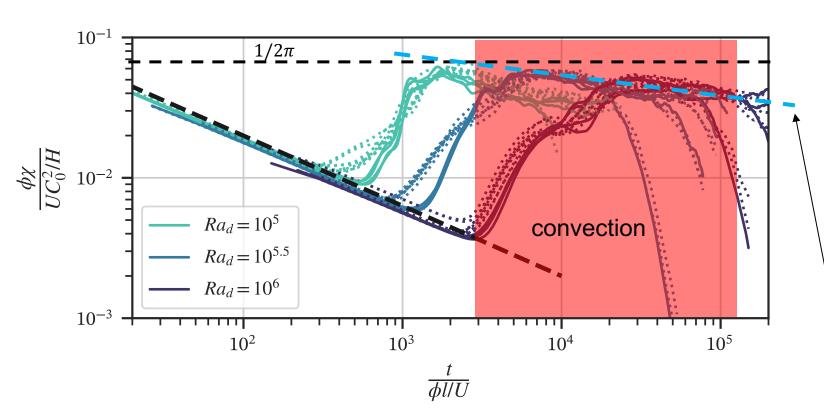
$$\chi = \kappa \langle |\nabla C|^2 \rangle = \frac{\kappa}{H} \int_{-\infty}^{\infty} |\partial_z C|^2 dz$$
$$= \sqrt{\frac{\kappa}{8\pi t}} \frac{(\Delta C)^2}{H}$$



## Modelling scalar dissipation



$$\chi = D\langle |\nabla C|^2 \rangle_f = \frac{D}{V_f} \int_{V_f} |\nabla C|^2 \ dV$$



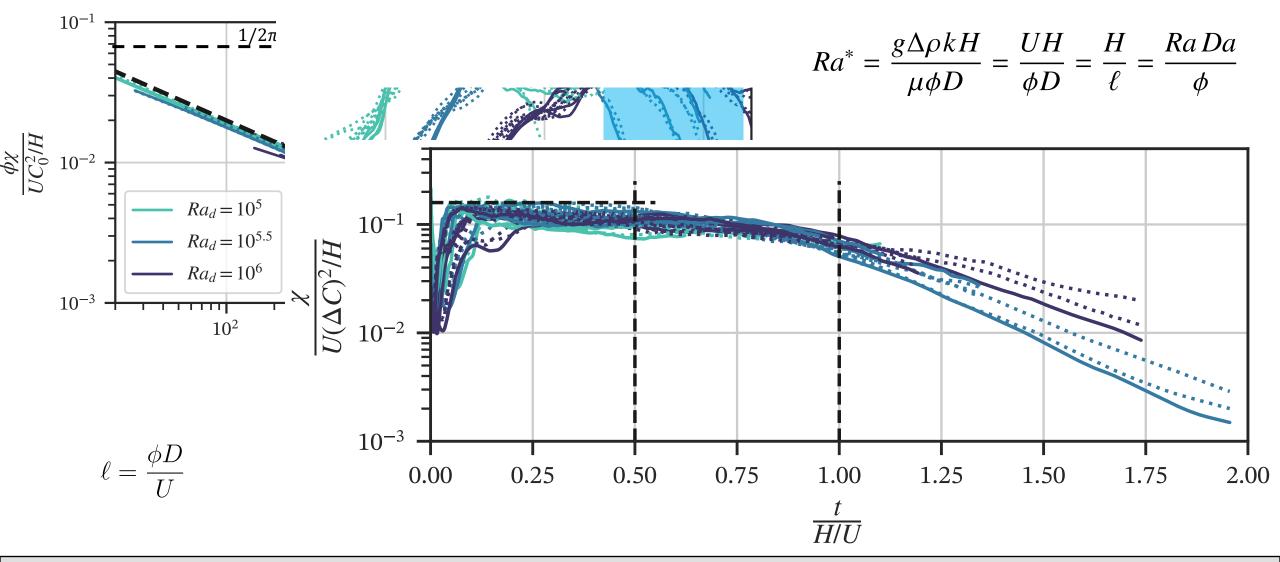
#### Convection

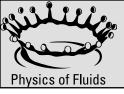
$$\chi = \kappa \langle |\nabla C|^2 \rangle = \kappa \frac{L_m}{H} \langle |\nabla C|^2 \rangle_{ML},$$
$$|\nabla C| \approx \frac{\Delta C}{2\sqrt{\pi \kappa t}}.$$
$$L_m \approx 2Ut,$$

$$\chi \approx \kappa \frac{2Ut}{H} \frac{(\Delta C)^2}{4\pi \kappa t} = \frac{1}{2\pi} \frac{U_d(\Delta C)^2}{H}.$$

 $1/2\pi$  is the maximum value of dissipation. Practically,  $\chi$  decreases with time







# Thank you for your attention! Questions?

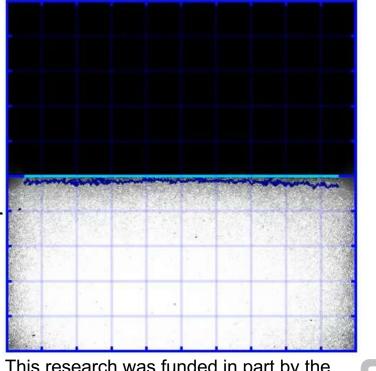


- Simulations and experiments are used as complementary tools
- Multiple length scales are relevant at different phases of the process
- Mixing length predicted experimentally exhibits a self-similar behaviour that agrees well with theoretical prediction
- Mixing measured numerically via mean scalar dissipation has a self-similar behaviour.

We explain theoretically the scaling laws

observed





This research was funded in part by the Austrian Science Fund (FWF) [Grant J-4612]

European

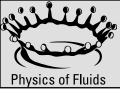


Der Wissenschaftsfonds.



This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No.~101062123.

arxiv.org/abs/ 2310.04068





High-resolution images, movies and slides are available upon request to <a href="mailto:m.depaoli@utwente.nl">m.depaoli@utwente.nl</a>